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EXACT ALGORITHM FOR DYNAMICS

OF CHARGED PARTICLES IN A

MAGNETIC FIELD

R.E. JOHNSONa and S. RANGANATHANb,*

aDepartment of Mathematics and Computer Science, bDepartment of Physics,
Royal Military College of Canada, Kingston, Ontario, Canada K7K 7B4

(Received 1 November 2001)

A new and exact algorithm for the two-dimensional motion of an electron in a constant,
perpendicular magnetic field has been derived. It is then extended to include a position-
dependent force, of which the Coulomb force is an example. Such an algorithm can be
readily used in any molecular dynamics simulation.
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I. INTRODUCTION

There has been considerable interest in studying the effect of a mag-

netic field on static, dynamic and transport properties of one-compon-

ent plasmas [1–4]. The systems of interest include three-dimensional,

two-dimensional and, more recently, bilayer and multilayer electron

gas. Analysis of such systems using molecular dynamics computer

simulation methods requires an algorithm for the motion of the par-

ticles which is efficient and as accurate as possible. The effect of the

long-range ion–ion interaction potential may be modelled through

the use of the Ewald sum [5]; this expresses the potential energy in

terms of two convergent summations, one in real space and the

other in reciprocal-lattice space. The force on each particle is then
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obtained from this expression and inserted in the dynamics algorithm.

When a magnetic field is introduced, changes to the algorithm are

required. The two known adjustments, a simple extension of the

Verlet algorithm [6] and the one used by Bernu [1] have deficiencies.

In this paper, we derive an algorithm that can be used to determine

the motion of a charged particle in both a constant external magnetic

field and the electric field created by other particles in the system.

The result is exact in the case of a magnetic field alone. It is presented

here in the context of electrons in a plane, but can easily be extended to

three-dimensional systems.

II. DERIVATION FOR MAGNETIC FORCE ONLY

Consider a constant, uniform transverse magnetic field of strength B

which acts on electrons constrained to move in the xy-plane. The

equations of motion are

€xxðtÞ ¼ �B _yyðtÞ, €yyðtÞ ¼ B _xxðtÞ: ð1Þ

It follows that the even time derivatives are given for n 2 N by

xð2nÞðtÞ ¼ ð�1ÞnB2n�1 _yyðtÞ, yð2nÞðtÞ ¼ ð�1Þnþ1B2n�1 _xxðtÞ, ð2Þ

and the odd for n¼ 0 or n 2 N by

xð2nþ1ÞðtÞ ¼ ð�1ÞnB2n _xxðtÞ, yð2nþ1ÞðtÞ ¼ ð�1ÞnB2n _yyðtÞ: ð3Þ

Using Taylor series about t in powers of h we obtain

xðtþ hÞ þ xðt� hÞ ¼ 2
X1
n¼0

h2n

ð2nÞ!
xð2nÞðtÞ

¼ 2xðtÞ þ
2

B
_yyðtÞ

X1
n¼1

ð�1ÞnðBhÞ2n

ð2nÞ!

¼ 2xðtÞ � 2B�1ð1� cosBhÞ _yyðtÞ,

yðtþ hÞ þ yðt� hÞ ¼ 2yðtÞ þ 2B�1ð1� cosBhÞ _xxðtÞ:

ð4Þ
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xðtþ hÞ � xðt� hÞ ¼ 2
X1
n¼0

h2nþ1

ð2nþ 1Þ!
xð2nþ1ÞðtÞ

¼
2

B
_xxðtÞ

X1
n¼0

ð�1ÞnðBhÞ2nþ1

ð2nþ 1Þ!

¼ 2B�1 sinBh _xxðtÞ,

yðtþ hÞ � yðt� hÞ ¼ 2B�1 sinBh _yyðtÞ:

ð5Þ

Using (5) to express _xx(t) and _yy(t) in terms of [x(tþ h)� x(t�h)] and

[y(tþ h)� y(t� h)], substituting this into (4) and setting

a¼ (1� cosBh)/sinBh, we obtain

xðtþ hÞ ¼ 2xðtÞ � xðt� hÞ � a½yðtþ hÞ � yðt� hÞ	,

yðtþ hÞ ¼ 2yðtÞ � yðt� hÞ þ a½xðtþ hÞ � xðt� hÞ	:
ð6Þ

The solution of this linear system for x(tþ h) and y(tþ h) is

xðtþ hÞ ¼ 2xðtÞ � xðt� hÞ � 2a½yðtÞ � yðt� hÞ	 þ a2xðt� hÞ
� �

=ð1þ a2Þ

¼xðtÞ þ cosBh xðtÞ � xðt� hÞ½ 	 � sinBh½yðtÞ � yðt� hÞ	,

yðtþ hÞ ¼ 2yðtÞ � yðt� hÞ þ 2a½xðtÞ � xðt� hÞ	 þ a2yðt� hÞ
� �

=ð1þ a2Þ

¼yðtÞ þ cosBh½yðtÞ � yðt� hÞ	 þ sinBh½xðtÞ � xðt� hÞ	:

ð7Þ

This is the algorithm which yields the exact motion of each electron

due to the magnetic field only. The corresponding expressions for velo-

city components are

_xxðtÞ ¼
Bh

sinBh

xðtþ hÞ � xðt� hÞ

2h
, _yyðtÞ ¼

Bh

sinBh

yðtþ hÞ � yðt� hÞ

2h
:

ð8Þ

Assume that the dynamics calculation is started by specifying the

coordinates at times � h and 0. The orbit of each electron will be the

circle which passes through (x(� h), y(� h)), (x(0), y(0)) as prescribed

and (x(h), y(h)) as obtained from (7); let d be the distance between

the first two points. From (7) and (8) it can be shown that the radius
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of the circle and the speed of the electron are, respectively,

r1 ¼ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cosBhÞ

p
and s1 ¼ Br1: ð9Þ

It can be shown that the position given by (7) for any multiple of h is

the same as that given for the same instant by the known solution for

continuous time variable.

III. COMBINATION OF MAGNETIC FORCE AND

POSITION-DEPENDENT FORCE

Now consider the equations of motion

€xxðtÞ ¼ fxðtÞ � B _yyðtÞ, €yyðtÞ ¼ fyðtÞ þ B _xxðtÞ, ð10Þ

where fx(t) and fy(t) are components of an interaction force depending

on the position coordinates (x(t), y(t)). For example, this force could

be the Ewald sum expression for the Coulomb interactions among

the electrons.

Higher order time derivatives can be computed:

xð3ÞðtÞ ¼ _ffxðtÞ � B €yyðtÞ 
 �BðfyðtÞ þ B _xxðtÞÞ

yð3ÞðtÞ ¼ _ffyðtÞ þ B €xxðtÞ 
 BðfxðtÞ � B _yyðtÞÞ,

in which time derivatives of f are neglected; this is consistent with stan-

dard dynamics algorithms. Now, of course, h must be sufficiently

small to yield accurate results.

This procedure gives the following approximate formulas for even

and odd time derivatives for n 2 N

xð2nÞðtÞ ¼ ð�1Þnð�B2n�2fxðtÞ þ B2n�1 _yyðtÞÞ

yð2nÞðtÞ ¼ ð�1Þnþ1
ðB2n�2fyðtÞ þ B2n�1 _xxðtÞÞ

xð2nþ1ÞðtÞ ¼ ð�1ÞnðB2n�1fyðtÞ þ B2n _xxðtÞÞ

yð2nþ1ÞðtÞ ¼ ð�1Þnð�B2n�1fxðtÞ þ B2n _yyðtÞÞ:

ð11Þ
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The Taylor series now give

xðtþ hÞ þ xðt� hÞ ¼ 2xðtÞ � 2
1� cosBh

Bh
h _yyðtÞ

þ 2
1� cosBh

ðBhÞ2
h2fxðtÞ,

yðtþ hÞ þ yðt� hÞ ¼ 2yðtÞ þ 2
1� cosBh

Bh
h _xxðtÞ

þ 2
1� cosBh

ðBhÞ2
h2fyðtÞ,

ð12Þ

xðtþ hÞ � xðt� hÞ ¼ 2
sinBh

Bh
h _xx ðtÞ þ 2

sinBh� Bh

ðBhÞ2
h2fyðtÞ,

yðtþ hÞ � yðt� hÞ ¼ 2
sinBh

Bh
h _yy ðtÞ � 2

sinBh� Bh

ðBhÞ2
h2fxðtÞ:

ð13Þ

Using (13) to express _xxðtÞ in terms of ½xðtþ hÞ � xðt� hÞ	 and fy(t) and

_yyðtÞ in terms of ½yðtþ hÞ � yðt� hÞ	 and fx(t), then substituting into

(12) and letting A¼ 2a/Bh, we obtain

xðtþ hÞ ¼ 2xðtÞ � xðt� hÞ � a½yðtþ hÞ � yðt� hÞ	

þ Ah2fxðtÞ,

yðtþ hÞ ¼ 2yðtÞ � yðt� hÞ þ a½xðtþ hÞ � xðt� hÞ

þ Ah2fyðtÞ:

ð14Þ

The solution of the linear system (14) yields the desired algorithm: it is

xðtþ hÞ ¼ f2xðtÞ � xðt� hÞ � 2a½yðtÞ � yðt� hÞ	 þ a2xðt� hÞ

þ Ah2½ fxðtÞ � a fyðtÞ	g=ð1þ a2Þ,

yðtþ hÞ ¼ f2yðtÞ � yðt� hÞ þ 2a½xðtÞ � xðt� hÞ	 þ a2yðt� hÞ

þ Ah2½ fyðtÞ þ a fxðtÞ	g=ð1þ a2Þ:

ð15Þ
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This agrees with the standard Verlet algorithm in the limit B! 0 since

a! 0 and A! 1, and can also be expressed as

xðtþ hÞ ¼ xðtÞ þ cosBh ½xðtÞ � xðt� hÞ	 � sinBh ½yðtÞ � yðt� hÞ	

þ h2
sinBh

Bh
fxðtÞ �

1� cosBh

Bh
fyðtÞ

� �
,

yðtþ hÞ ¼ yðtÞ þ cosBh ½yðtÞ � yðt� hÞ	 þ sinBh ½xðtÞ � xðt� hÞ	

þ h2
sinBh

Bh
fyðtÞ þ

1� cosBh

Bh
fxðtÞ

� �
:

ð16Þ

The corresponding expressions for velocity components are

_xxðtÞ ¼
Bh

sinBh

xðtþ hÞ � xðt� hÞ

2h
�

sinBh� Bh

Bh sinBh
h fyðtÞ,

_yyðtÞ ¼
Bh

sinBh

yðtþ hÞ � yðt� hÞ

2h
þ

sinBh� Bh

Bh sinBh
h fxðtÞ:

ð17Þ

In a recent study of the effects of a magnetic field on diffusion in a

two-dimensional one-component plasma [7], we have used Eq. (16)

in the molecular dynamics calculation.

IV. COMPARISON WITH OTHER ALGORITHMS

We have studied two ways of comparing this algorithm with others.

One uses each algorithm to compute the orbit of a particle subject

to a magnetic force only: the exact result is well known. The second

considers a two-dimensional system of electrons interacting through

Coulomb forces and subject to a constant magnetic field normal to

the plane. Results using our algorithm were compared to those

obtained from a simple Verlet algorithm and from an improvement

reported by Hansen [8] to have been used in the work of Bernu [1].

The simplest Verlet algorithm [6] for this problem is

xðtþ hÞ ¼ 2xðtÞ � xðt� hÞ � Bh2 _yyðtÞ þ h2fxðtÞ,

yðtþ hÞ ¼ 2yðtÞ � yðt� hÞ þ Bh2 _xxðtÞ þ h2fyðtÞ,

_xxðtÞ ¼ ðxðtþ hÞ � xðt� hÞÞ=2h,

_yyðtÞ ¼ ðyðtþ hÞ � yðt� hÞÞ=2h:

ð18Þ
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It is easy to show that this is unsatisfactory because it does not yield

circular orbits for the magnetic force only.

The Bernu algorithm is obtained by solving the system (18) for

x(tþ h) and y(tþ h); the result, with �¼Bh/2, is

xðtþ hÞ ¼ xðtÞ þ
1� �2

1þ �2
½xðtÞ � xðt� hÞ	 �

2�

1þ �2
½yðtÞ � yðt� hÞ	

þ
h2

1þ �2
½fxðtÞ � � fyðtÞ	,

yðtþ hÞ ¼ yðtÞ þ
1� �2

1þ �2
½yðtÞ � yðt� hÞ	 þ

2�

1þ �2
½xðtÞ � xðt� hÞ	

þ
h2

1þ �2
½fyðtÞ þ � fxðtÞ	:

ð19Þ

If the magnetic force only is considered, the electron orbit produced by

this algorithm will, in fact, be a circle passing through the two given

initial points; however, with (x(h), y(h)) determined by (19) the

radius and electron speed are

r2 ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðBh=2Þ2Þ=ðBhÞ2

q
and s2 ¼ dh�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðBh=2Þ2

q
: ð20Þ

These results are not exact. Figure 1 shows the ratio of these radii and

speeds to those obtained by our exact algorithm for Bh 2 ð0,�Þ.

The differences are small for values of Bh<1 which are likely to be

used in molecular dynamics calculations; however, the effect of differ-

ent speeds causes the positions obtained from (19) to lag behind those

obtained from (16). Thus, when particle interactions are included, the

slight differences in coordinates for small time can eventually yield

very different trajectories.

The second comparison involved calculations for a two-dimensional

system of electrons with a standard molecular dynamics configuration:

an infinite lattice of square boxes each containing 128 particles. The

interelectronic Coulomb forces were treated using the Ewald sum

method with minimum imaging convention [9]; a magnetic field of con-

stant strength B perpendicular to the plane was included. Let n be the

areal density,m the mass and e the charge of an electron and c the speed
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of light. Our dimensionless units correspond to lengths in units of

r0¼ (�n)�1/2 and times in units of ðmr30=e
2Þ

1=2; B is in units of

ðmc2=r30Þ
1=2. We chose the time increment h¼ 0.03 and box side

length 20.2. For a typical areal density of 8� 1012m�2, h¼ 0.03 corre-

sponds to 0.15 ps, and B in dimensionless units is almost equal to B in

Teslas. Electron trajectories for our algorithm (16) and for algorithm

(19) were obtained for various values of B.

The corresponding trajectories of a typical electron using (16) and

(19) are shown in Fig. 2 for B¼ 1 and Fig. 3 for B¼ 4. For small B

the trajectories are nearly identical for a certain initial time interval,

but they eventually diverge because slightly different positions produce

different interactions with the other electrons. The effect of a larger

magnetic force is to reduce the diffusion of the electrons; this causes

the trajectories produced by the different algorithms to stay together

longer.

FIGURE 1 Comparison of results using algorithms (16) and (19) for magnetic force
only. Both give circular orbits; the ratios of the radii and speeds are the same for any
particle. As defined by Eqs. (9) and (20) the solid curve shows r2/r1 and the dashed curve
shows s2/s1 for Bh 2 ð0,�Þ.
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FIGURE 2 Comparison of results of (16) (solid) and (19) (dashed) for trajectory of a
typical particle subject to both magnetic and Coulomb forces: (a) and (b) show x and y
coordinates as functions of time and (c) shows the orbit starting at the point marked �.
Magnetic field strength is B¼ 1.
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FIGURE 2 (Continued).

FIGURE 3 Same as Fig. 2 except B¼ 4.
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FIGURE 3 (Continued).
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V. CONCLUSION

We assert that (16) provides the best algorithm for dynamics calcula-

tions for a system of charged particles in a constant external magnetic

field. It is as simple to use as any of the alternatives, and it alone agrees

with the exact solution for magnetic force only.
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